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Abstract. Projection operators with correct normalisation are constructed for obtaining 
the Gel‘fand basis i(,‘k’,)) of the graded unitary group U ( m / n ) .  Each U i m / n )  Gel‘fand 
basis vector i!:?,)) for an f-particle system uniquely corresponds to a non-standard basis 
vector I [v ] (m) )  of the permutation group S(f). The matrix element of the generator 
of U(m/n 1 between the two Gel’fand basis vectors I(,:’,)) and ,(/:’,)) is proportional to 
the overlap between the two non-standard basis vectors i[v]lm’I) and i [ v ] (m! )  of % f ) .  
Explicit formulae are given for the normalisation constant in the projection operator as 
well as for the matrix elements of the generator E‘ - I ,  of the graded unitary group U ( m / n ) ,  
which is the extension of the Gel’fand-Tsetlin formula for the ordinary unitary group U ( m  j ,  

1. Introduction 

It is known that the standard projection operator of the permutation group S(f) (or 
the normal unit of Rutherford (1948)) can be used to generate the Gel’fand basis of 
the U(m) group up to phase and normalisation from the f-particle product states 
(Lezuo 1972, Patterson and Harter 1976a, b, Chen et al 1977b). Alternatively, a 
non-standard projection operator of S ( f )  is used by Sarma and Saharasbudhe (1980) 
to construct the Gel’fand basis of U(m) ,  and the Gel’fand-Tsetlin formula for the 
generator E’-’, of U ( m )  (Gel’fand and Tsetlin 1950, Baird and Biedenharn 1963, 
Nagel and Moshinsky 1965) is rederived in a simple way by means of the decomposing 
technique for the non-standard basis of S(f) developed by them. 

Recently, we introduced the Gel’fand basis for the graded unitary group U ( m / n )  
with m ( n  ) bosonic (fermionic) single-particle (SP) states, which is the irreducible basis 
(IRB) adapted to the group chain U(m/n) 2 U ( m / n  - 1) 3 . . . U(m) 3 V ( m  - 1) 3 
. . . z U ( 1 ) ,  and showed that it can be constructed with the help of the standard 
projection operator of the graded permutation group (Chen er a1 1983a, b). A 
non-analytic expression was given for the normalisation constant in the standard 
projection operator. In this paper it will be replaced by an analytic expression. 

The irreducible representation (irrep) of the group S U ( m / n )  has been discussed 
by Balentekin and Bars (1981a, b) in  the context of characters, and by Han et a1 
(1981) in the context of the reduced matrix elements of the SU(m/n)  generators. 
However, an explicit expression for the irreps of the SU(m/n)  Lie algebra is not 
available. 

Q 1983 The Institute of Physics 3435 
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In this paper, we first show that each U ( m / n )  Gel’fand basis vector I([:\)) for an 
f-particle system uniquely corresponds to a non-standard basis vector I [v] (m))  of the 
permutation group S( f ) .  Then we extend the Sarma-Saharasbudhe technique to 
decompose the non-standard basis I [v] (m)) .  Furthermore, we show that the Gel’fand 
matrix element of the U ( m / n )  generator is expressible in terms of the overlap integral 
of the non-standard basis vectors of S(f), i.e. 

where fi-’ and f i  are the numbers of the SP states i - 1 and i in the basis vector I([;\)), 
respectively, The overlap can be calculated by using the extended Sarma-Saharas- 
budhe decomposing technique for the non-standard basis of S(f). Explicit expressions 
are given for the matrix elements of the generator Ek-‘k (boson-boson), which is 
nothing other than the well known Gel’fand-Tsetlin formula, the generators E m m c l  
(fermion-boson) and E m + k - ’ m + k  (fermion-fermion), which are the generalisation of 
the Gel’fand-Tsetlin formula to the case involving both bosons and fermions. In 9 5 ,  
we derive an explicit expression for the normalisation constant which is needed to 
construct explicitly the orthonormal Gel’fand basis of U ( m / n )  by using the standard 
projection operator of S(f). In this way, the matter of constructing the Gel’fand basis 
and matrix elements of the graded unitary group U ( m / n )  is totally settled. 

2. The non-standard projection operator of S(f) 

2.1. A brief review and terminology 

We begin with a brief review of the results obtained in Chen et a1 (1983a, b). 

(lf)o)l~i,cp?i,. . .(oL,>= [ Ai ] 
where the two square brackets are sign factors (Dondi and Jarvis 1981), whereas 

The graded coordinate permutation ( I f ) ”  is defined as 

A2 

A f Af-l 
A* ] l ( o i f q ? i z *  * 9  AI), f ( 2 . 1 ~ )  

PA=(;:). (2.16) 

p i .  . . rp, or x a , x b . .  . representing bosonic states, while ( P ~ + ~ .  . . (om+,  or 
&, +hP. . . represent fermionic states, and 

xbxb =xbxL, *h*b = -*b*h. ( 2 . l c )  

The ( f  - 1 )  permutations ( i  - 1, i)”, i = 2 , 3 ,  . . . f, generate the graded coordinate 
permutation grou s( f ) .  The Yamanouchi basis of s(f) can be labelled by the graded 
Young tableau $‘I. The relation of PI”] to the graded permutation fi is exactly the 
same as the ordinary Yamanouchi basis YP1 to the ordinary permutation p .  

A Gel’fand basis vector of U ( m / n )  is labelled by a graded Weyl tableau Wiz, in 
which no two identical SP boson (fermion) states are permitted to occupy the same 
row (column). 

Henceforth we will drop the attributive word ‘graded’ altogether for simplicity. 
Therefore, whenever one comes across the words permutation, permutation group, 
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symmetric (antisymmetric), Young or Weyl tableau, one has to bear in mind that they 
refer to the graded permutation, graded permutation group, graded symmetric (anti- 
symmetric), graded Young or Weyl tableau, respectively. For example, when we say 
the two-fermion state t,bkt,bt is antisymmetric we mean that it is graded antisymmetric: 
;$:$: = -$:$;, Also the notations 4, $’’IS, ?!”I and @[2] in Chen et a1 (1983a, b) 
for the graded case are simplified to p ,  P?”, Y?] and W;?). Evidently in the boson 
sector of the graded space, the graded ‘X’ is identical to the ordinary ‘X’, ‘X’ standing 
for the permutation, Young tableau,, . , etc. 

2.2. Projection operator for the U(m/n) Gel’fand basis 

It was shown (Chen et al 1983b) that the Yamanouchi basis of S(f) and the Gel’fand 
basis of U ( m / n ) ,  1 Y!”’, Wt2) ), can be obtained by applying the standard projection 
operator PPIs of S(f) to the f-particle product states. Under the convention in 9: 2.1, 
equation (36) in Chen et al (1983b) can be written as 

(2.2) ~ S ~ l ’ l f l .  * f ~ m + l  1 ~ f m + n ) = ~ ‘ ~ ) ~ ( { f i ) ) l ~ I ~ ~ ,  w[2)), 
where lfl . . . fm+n)  is the f-particle product state, 

(2.3) 

(2.4) 

1 F +1 11 * . .fJm+l . . . f m + n )  = 1x1 . . a x{<. . . . . . ximt,bmm+l . . ILf,+n), 

The standard projection operator of S(f) is given by 
1 / 2  

= ($) c ([vlrlPlE~ls)p, (2.5) 

where h ,  is the dimension of the irrep [ v ]  of S(f), l[v]r)  and / [ V I S )  are the standard 
(i.e. Yamanouchi) basis of S( f). R(”)’({fi}) is a normalisation constant (norm) depending 
on Vi}, 

R ( Y ) S ( { f i } ) = R ( Y ) S ( f l .  * . f m ;  f m + l  

It is convenient to use a Gel’fand symbol 

i [ V I  I 

to label the Gel’fand basis of U ( m / n ) ,  where 

N = m + n ,  [ ~ I = [ ~ ~ N ] = [ ~ I N ~ z N . .  .I, 

fmtn) .  

(2.7a) 

* . 1. 
(2.7b) 

The relation between the Gel’fand symbol and the Weyl tableau W\:) is as follows: 
the Young diagram [ V k ]  in (2.7a) results from deleting all the boxes containing the 
state labels k + 1, k +2,  . . . , N in the Weyl tableau W{z) .  

The IRB of S(f) and U ( m / n )  now can be designated by 
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and (2.2) becomes 

(2 .8b)  

The basis vector of ( 2 . 8 ~ )  satisfies the eigenequations (see equation (35) in Chen er 
a1 (1983b)) 

( 2 . 9 ~ )  

where ( C ( f ) ,  C(s)) is the csco-11 of S ( f ) ,  and 

@(sf)  = ( @ ( F N -  11, * * , %(FZ), % ( F I ) ) ,  (2.96) 

%(F,)  being the csco-I of the state permutation group Y ( F i ) .  There is a one-to-one 
correspondence between the eigenvalues of C ( f ) ,  C(s), % ( s o  on one hand, and v, 
r,  ( m )  on the other hand (Chen and Gao 1982). Hence in ( 2 . 9 ~ )  we just use v, r ,  and 
(m) to represent the eigenvalues of C ( f ) ,  C(s) and %(sf) for simplicity in notation. 

In the following, we need to use intrinsic permutation group s ( f )  (Chen and Gao 
1982) whose elements pa are defined by 

p $ b  = P b p a  for any P b  E S ( f ) .  (2.10) 

The relation between the state permutation P and the intrinsic permutation p when 
acting on the product states is 

p =p-’. (2.11) 

Therefore ( 2 . 9 ~ )  can be replaced by 

(2.12a) 

C(s’) = (C(FN-l) ,  . . . , C(FZ), C ( F l ) ) ,  (2.12b) 

where C(F,) is the csco-I of the subgroup S(Fi) of the intrinsic permutation group s(f). 
Now let us introduce a non-standard projection operator of S ( f ) ,  

(2.13) 

where l[v](m)> is a non-standard basis of S ( f )  to be decided below, and ([v]rlpl[v](m)) 
are the generalised matrix elements introduced by equation (102) in Chen and Gao 
(1982). Suppose 

(2.14) 

K being a constant. From (2.3) we know that 



Gel’fand basis and matrix elements of U(m/n)  3439 

where 8, is the permutation parity of q. Combining (2.10)-(2.15), we obtain the 
eigenequations to be satisfied by the non-standard projection operator 

(2.16) 

From (2.10), (2.13) and (2.16) it is easy to show that the non-standard basis 
l[v](m)) obey the eigenequations 

(2.176) 
where C(F, )  is the csco-I of S ( F , ) .  Let us prove one of the equations in ( 2 . 1 7 ~ )  as 
an example. 

= p F u l ( m i  ( 2 . 1 7 ~ )  p p j u l ( m )  - - p F v l ( m )  

1 /2  

= (k) c ([~ l r lPn l [~ l (m) )PaP  
Pa 

112 

= ($) c ( [ V I ~ I P ~ P - ~ I [ U I ( ~ ) ) ~ ~ .  (2.17d ) 
P b  

Since (2.17d) holds for any Yamanouchi symbol r, it follows that 

~-‘ i [vI(m))  = I[vI(m)). 
This is just the third equation in (2 .17~1,  because p - l  belongs to 11:=1 3 S ( f , ) .  

Due to the fact that the csco-J of a finite group is the analogy of the Casmir 
operator set in the Lie group (Chen et a1 1977a), equation (2.17a,b) shows that 
i[v](m )) is the IRB of S ( f )  adapted to the group chain 

S ( f )  2 Sifl, f 2  . . f N  1 ( 2 . 1 8 ~ )  
s ( f l 9 f 2 . .  ~ f N ~ ~ s s ( F N - 1 ) ~ s ( f N ) 2 s ( F N - 2 ) ~ s ( f N - 1 ) 2  s t .  =’s(fl)@s(f,). (2,186) 

Writing out all quantum numbers explicitly, 

(2.19) 
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It belongs to the irrep [vi- l ]  of S(Fi-l), and to the totally symmetric irrep [fl] 

(antisymmetric irrep [fi]=[l'i]) of S ( f i )  for i s m (i > m). Obviously, the quan- 
tum numbers [fi] or [J] are redundant, and the quantum number [v](m) is sufficient 
for uniquely specifying the non-standard basis vector. 

Now we turn to the determination of the constant X in (2.14). From the orthonor- 
mality of lr,y;)), we have 

( K I - ~  = ( f l .  . f m + n ( P r  [ v l ( m ) t  pr [ v l ( m )  If1 * . f m + n ) .  (2.20a) 

We also have (Lowdin 1967) 

Similarly 

(2.21a) 

(2.21b) 

which is to be used in $ 5 .  
Inserting ( 2 . 2 1 ~ )  into (2.20a), 

lxI-* = 2 ( [v~(m)Ipl [v~(m))( f l*  * - f m + n I P l f l .  . . f m + n > *  (2.20b) 

Notice that, due to the orthonormality of the product states (2.3), only the permutations 

P 

N 

S(f1.  . f N ) =  n OS( f i )  
i = l  

p E s ( f l  . . . fN)r 

have non-vanishing contribution to (2.20a), and for those p we have either 

(2.22) 

or 

(2.23) 
Therefore (2.20b) is equal to the order of the group S ( f l . .  . f ~ ) .  Choosing K to be 
real positive, we get 

K = ( f l ! f 2 !  . . * f m + n ! ) - 1 ' 2 0  (2.24) 

Let us introduce the following notations: 

(2.25) 

( 2 . 2 6 ~ ~ )  

(2.27) 
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are orthonormal, where {Qo} is orthogonal but not normalised, 

(Qol@o) = x2. (2.266) 

It should be pointed out that the basis of U ( m )  used by Sarma and Sahasrabudhe 
(1980) is not properly normalised, and they consequently have to introduce the factor 
[(N, + 1)N,]*’2 in their equation (9) ad libitum. 

In summary, the Gel’fand basis of U ( m / n )  can be constructed either through 
(2.86) by using the standard projection operator of S ( f ) ,  where the norm R(”” is to 
be decided, or through (2.27) by using the non-standard projection operator of S( ), 
where the non-standard basis I[u](m j) is to be decided. A given Weyl tableau W(m) 
corresponds to a unique Gel’fand symbol ({:;), which in turn specifies uniquely a 
non-standard basis vector l[u](m)) of S ( f ) .  For example, for m = n = 2, 

L l  

3. Decomposition of non-standard basis of S(f)  

3.1. New symbol for the Gel’fand basis of U ( m / n )  

In 9: 2, we use (2.7) to label a Gel’fand basis of U ( m / n ) .  This symbol is a straightforward 
extension of the ordinary Gel’fand basis; however, it is not convenient for what follows. 
From now on, we use the new symbol 

to label a Gel’fand basis of U ( m / n  j, where 

h “Im, [m;k ]=[mikmjk . .  . mhck,k]=[&iik]=[i;k]. (3.2) 

The integer m Tk denotes the length of the ith column in the Weyl tableau Wi2, after 
deleting all the boxes associated with the states k + 1, k + 2, . . . , m + n, as is shown 
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below: 

W t”, 

where N ‘  = N - 1. For example 

(3.3) 

where the upper part above the broken line refers to (!E;;:;;) whereas the lower part 
refers to (:E$. 

The integers m,, have to satisfy the so-called betweenness condition (Baird and 
Biedenharn 1963) 

mll+l ml+l,l+l 

m11 

4 41 f o r i , j s m - l .  

From (3.2) and (3 .5a)  we get the betweenness condition for m ;,, 

mG-1 2 m l + l , , T ~  

m,  
9 9  

We also have the restrictions that 

m.. = 0 

m F,m+k = 0 

for i > j  + 1, 

for i > h + k  + 1 = mlm + k  + 1. 

(3.5U) 

(3.5b) 

( 3 . 6 ~ )  

(3.66) 
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Equation ( 3 . 6 ~ )  comes from the fact that with j boson states, the maximum row 
number is j ,  while (3 .66 )  comes from the fact that with k fermion states, the maximum 
column number is equal to h + k = m l m  + k ,  as can be seen clearly from (3.3). 

In  the following, we will often use 

fik = m z k - m i k - 1  (3.7u) 

to denote the number of the bosonic state k in the ith row of W\2),  and use 

f -  I K  = miK -m;k-l (3.76) 

to denote the number of the fermionic state K in the ith column of W\?). It follows 
from (3.6) that 

fntm = m m m ,  fh%,m+n = m h = , m + n *  (3.8) 

The total numbers of the bosonic state k and the fermionic state m + k are given by 

fk = c:fik, k = 1 , 2 ,  . . . m, 

f m + k  = c : + k f F , m + k ,  k = 1 , 2 , .  . . n, 
i 

respectively. 

3.2. The extended Yamanouchi symbol 

The symbol (2.19) for the non-standard basis of S(f)  is rather awkward. An elegant 
symbol, the extension of the Yamanouchi symbol, was introduced by Sarma and 
Saharasbudhe (1980) instead. We now extend it further to the more general case. 

The basis vector of (2.19) can be represented by the following ( m  + n )  parentheses: 

jiv](m)) = ( 1 ~ 1 1 ) ( 1 ~ 1 2 2 . ~ 2 2 )  . . . ( l f l m .  . . mf") 
x ((h)f.. ??I  + "  . . .  ifi-n,-,,) . . . ( ( m ) f ~ ~ ~  + I  . . .  T f T m - 1 ) .  (3.10a) 

where the kth parenthesis 

( l f X k .  . . i f i k .  . . kfkk)  (3.106) 

signifies a basis which is totally symmetric with respect to the permutation group S( f k )  
associated with the particle F k - l  + 1, F k - l +  2 ,  . . . , Fk, and in which there are f i k  

particles (fik states X k )  in the ith row of the Young diagram Y")  (Weyl tableau w\?, 1, 
i = 1, 2, , . . , k. Similarly, the ( m  + k)th parenthesis 

( 3 . 1 0 ~ )  

signifies a basis which is totally antisymmetric with respect to S ( f , n + k ) ,  and in which 
there are f 7 , m - k  particles ( f r , m + k  states & + k )  in the j th column of Y'") (Weyl tableau 
Wk?,). For example, the non-standard basis of S(11) corresponding to the Weyl 
tableau in (3.4) is now designated as 

I [v] (m))  = (1*)(122)(43i2)(33). (3.11) 

In the case when each parenthesis in ( 3 . 1 0 ~ )  contains either only one row number 
or only one column number, the extended Yamanouchi symbol goes back to the 
Yamanouchi symbol (rl  . . . rf) (noting that it differs from the definition used in Chen 

( ( h - ) f " - " m a k  . . .  7 t r m - k  . . .  j f i r + k  1 
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et a1 (1983b) where, following Hamermesh (1962), ( r f . .  . r l )  is defined as the 
Yamanouchi symbol). For instance 

Evidently we have 

(i)“ = ( 1 “ ) .  (7)“ = (7) (3.13) 

3.3. The construction of i[v](m )) 

Suppose Y, and Y, are the two Young tableaux which differ only by an interchange 
of the positions of the particles i and i + 1, and the Yamanouchi symbol r < s (or r > s 
in Hamermesh’s definition of the Yamanouchi symbol). Then 

P 1 ( i ,  i + l ) = [ ( a -  1)/(2a)1~’*~,+[(a+1)/(2~)1”~~, (3.14a) 

is symmetric in the indices i and i + 1, while 

W ” ( i ,  i +l)=[(a+ 1)/(2a)]1’2Yr-[(a- 1)/(2a)]1’2Ys (3.146) 

is antisymmetric in i and i + 1 (Jahn 1954), where a > 0 is the axial distance between 
i and i + 1. By repeatedly using (3.14) for all pairs (i, i + 1) which are to be symmetrised 
or antisymmetrised, we can construct the non-standard basis I[v](m)) out of the 
standard basis. 

For instance, I[v](m)) = (13)(22)(42i) can be constructed out of the following 
six Yamanouchi basis vectors: 

(4)(5)(i) (4)( i )G) (WW) ( 5 ) M )  (WW) (i)(%G) ‘p (3.15a) w2, ‘w 6 9 
11) 12) 13) 14) I9 13, 

where we deliberately leave the Young diagram [32] blank instead of filling it with 
numbers, and to the top of each Young tableau we attached the symbol (cl( T ) ( K )  
in accordance with (3.101, which specify the column numbers of the particles 6, 7 and 
8, respectively. For brevity, we write 1[32](j?i)) for (l3)(2’)(a?i), and ji) for 
lYl). Thus 

From the requirement that (437) is antisymmetric in the particles 6 and 7, we 

a l / a 3  = - J3, a 2 / a 5  = - Y Z ,  a4/a6  = - J2. (3.16a) 

get by using (3.146) that 
is 

- 

From (431) being antisymmetric in 7 and 8,  we have 
- - 

a l / a z  = - J 2 ,  a3 /a4  = -4, a5 /a6  = -J3. (3.16b) 
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Notice that the combination coefficients a, only depend on the axial distances 
between the numbers 6, 7 and 8, and are totally independent of how numbers are 
filled in the Young diagram [32]. Therefore, (3.17) remains true under the substitutions 

(13)(22)$3i)+ (12)(122)(43i), (13)(22)(T)(7)(& (12)(122)(T)(j)(,C). 

This is the reason why we leave the Young diagram [32] in ( 3 . 1 5 ~ )  blank. 
The above observation can be epitomised by the parenthesis independent decomposi- 

tion rule: each parenthesis in I [ v ] ( m ) )  can be decomposed into (or constructed out 
of) the Yamanouchi basis independently. 

This rule is crucial for later developments and should be well kept in mind. 
It is easy to see that the following combination is antisymmetric in i and i + 1: 

d l l l ( i ,  i + l ) =  - [ ( a - 1 ) / ( 2 a ) 1 " * ~ ~ + [ ( a + 1 ) / ) 2 a ) ] ' / ~ ~ ;  (3.18) 

where Y i  = ?, and Y :  = ?* are the cojugated tableaux of Y, and Y,, and s' < r' if r < s. 
Comparing (3.18) with (3.14a), it is clear that the antisymmetric combination 
coefficient in front of Y ;  is equal to the symmetric combination coefficient in front 
of Y,  up to a sign factor. We call it the symmetry of the combination coeficients under 
conjugation. By this symmetry, once the symmetric combination coefficients are 
known, the antisymmetric combination coefficients are easily obtainable by properly 
considering the sign factors, and vice versa. For instance, from (3.17), we immediately 
get the basis vector which is symmetric in 6, 7 and 8, 

j[E](134)) = /[221](134)) 

= Jg(Jfli) ;t Jfli)) + Jg(Jz13) + JZ14)) + J z ( J @ )  + JgjS)). (3.19) 

where 1;) stands for ~ Pt). 

3.4. The decomposition of  l [ v ] (m) )  

Due to the parenthesis independent decomposition rule, each parenthesis of l ( v ) (m) )  
in ( 3 . 1 0 ~ )  can be tackled individually. The decomposition of the symmetric paren- 
theses is already known. According to Sarma and Saharasbudhe (1980), the left and 
right decompositions of the k th symmetric parenthesis are 

k 

(Iflk. . , . k f k k )  = E' a ) k ' ( j ) ( .  . .if,"-' . * . I ,  ( 3 . 2 0 ~ )  
j = l  

with the normalised combination coefficients 

(3 .206)  



3446 J-Q Chen and X-G Chen 

nk ( m r k - l - m , k + i - i i )  112 

b i k ’  = (-1) fk”’. (3 .216)  1 1 / 2  1 = 1  1 l ! i ( m r k - m , k + i - i )  

The prime in (3.20) indicates that the summations are restricted to those indices j for 
which f i k  2 1. 

In order to decompose the antisymmetric (m +ki th  parenthesis 

( A ) E ( ( h ) f “ m - k  . . .  y f T m + k  * . .  i f T m + k  ), (3 .22)  

we turn to its conjugated (symmetric) basis 

( A ) = ( l f T m + k . ,  j t m c k  . . .  ( h  + k ) f = m + k  1. (3.23) 

Comparing (3.23) with the left of (3.20), we see that there is a slight difference between 
the two. In (3.20), the maximum row number for the state k is equal to k ,  whereas 
in (3.23) the maximum row number (i.e. the maximum column number in the origninal 
Weyl tableau W : ; ) )  for the state m + k is equal to h + k, and in general m # h. 
However, we are free to rename the ( m  +k) th  state as the state h +k,  i.e. let 
& , + k  = i ,bL+kr or ( m  + k )  = ( h  + k)’, and then use (3.21) to obtain the decomposition 
coefficients for (3.231, and finally switch back to the old name by letting ( h  + k ) ’ +  
(m + k ) .  In this way we have 

(3.24a ) 

(3.246) 

(“I (m r , m + k - l  - m L m + k  + i - i )  
( f m + k  )-1’2. 

(3.256) 

The prime in ( 3 . 2 4 ~ )  and (3.246) restricts the summation index j to those for which 

6 ’ ; m + k )  = ( - 1 ) 1 / 2  

n : + k ( m , m + k - m , m + k  + j - i )  

f ; ,m+k 1. 
Let the ( m  + k)th antisymmetric parenthesis be decomposed as 

( 3 . 2 6 ~  1 

h+k  

( A )  = 1’ . . r f T m t k - l  . . . )(;). (3 .266)  

According to the symmetry of the combination coefficients under conjugation, we have 

(3.27a, 6 )  

j = 1  

Cm+k) = E ; m + k ) ; ; m + k ) ,  b ;m+k j  ( m + k j  ‘ I m + k )  
UJ = 77, 6 ,  
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p = mz2+ 1 b l b l b l a l  

where E and q are sign factors, Now we claim that 

To justify (3.28a), let us decompose the ( m  + k)th parenthesis twice. Assuming j > i, 

where a 7, a 7 and a k, a iy are the decomposition coefficients for the first and second 
times respectively. On the basis of (3.28a),  we have 

sgn(a p k) = ( - 1 ) 6 , w . * k - '  . 5 1  sgn(a pi:) = ( - 1 ) h + k .  (9 

where ( is another sign factor. Therefore 

sgn (ap : - l a ; a~ )=  - 1. 

According to (3.18), this minus sign ensures that the right-hand side of (3.29) is 
antisymmetric in the particles Fm+k-l+ 1 and F m + k - '  + 2. Equation ( 3 . 2 8 ~ )  can be 
similarly justified. 

Assembling (3.25), (3.27) and (3.28), we finally get the decomposition coefficients 
for the antisymmetric parenthesis: 

nh+' (mFK-mTK-] - i + j )  

nttk (mTK-l -m;K-l  - i + j )  1 I ( f K  ( 3 . 3 0 ~ )  

( f K  )-"*> (3.306) 

I a'-"' = ( - l ) ~ h + k ~ m ~ x - m i < ~ - l ~  1 = 1  

t # j  

nh+k (mrKp1  -mi;  + j - i )  

n ! + k ( m T K - m T K + j - i )  

( 3 . 3 0 ~  ) 

1 
b::) = ( - l ) l / 2 ( - l ) ~ ~ - " m ~ ~ - m ~ ~ - ~ '  I = 1  1 i # j  

where 

K = m + k ,  (mi ;n )=(&, ) .  

3.5. The special case of  U(2/1) 

Consider the most general Gel'fand basis vector of U(2/1),  the Weyl tableau of which 
looks like 

1 2 . . .  D . , .  a 

where we introduced the two integers p and q. 
It is clear from (3.31) that 

m p 2  = mq3 = 1,  m p 3  = m i 2  = 2 ,  f 3  = mi3. (3.32) 
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There is only one antisymmetric parenthesis (@imi3-2). Using (3.26a), ( 3 . 3 0 ~ )  and 
(3.32),  it can be decomposed as 

J-Q Chen and X-G Chen 

As a verification of (3.33), let us assume that 

(3.33) 

(3.34) 

which is totally in agreement with equation (3.17) obtained through direct antisym- 
metrisation procedure. 

4. The matrix elements of generators E'-', of U(m/n) 

4.1. Matrix elements o f ~ ' - ' i  and overlaps between l [ v ] (m) )  

We first derive a general formula relating the Gel'fand matrix elements of E'-'' with 
the overlap integrals between the non-standard basis vector of S(f), i.e. 

(4.1) 

Let us prove it separately in the following three cases. 

(i) Boson-boson case 

In this case, both i and i - 1 refer to the bosonic states. Using (2.27) and (2.25) as 
well as the commutativity of Ei-l i  with PjYIcm), we have 
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k ' = F, - 1 + k. 

In (4.3a), (1'2'. . . k')- '  is the inverse of the k-cycle permutation operator. 
Inserting (4.30) into (4.2) and making use of (2.25), 

1/2  [ u l i m )  
= [(fz-1+ 1)fiI P ,  IW, 

1%) = IKfl}. * * {fi-1 + l H f 1  - 1) * . . Ifm+"}). 
where ( 2 . 1 7 ~ )  has been used, and 

From (4.4), (2.21b) and (2.27) we have 
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(4.36) 

(4.4) 

(4.5) 

Using the fact that only the permutations p belonging to the subgroup S(fl, . . + 
l , f i  - 1 , .  . . f m + " )  have non-zero contribution to (4.6), and that for those p we have 

(ii) Fermion-boson case 

Now E m m c l  represents an operator which shift the fermionic state m + 1 into the 
bosonic state m. The analogy of (4.2) is 

= E';+' k (-1)k-1(1f2'. . . k')-llxz$:+l. . , 4Em++<), (4.9) 

where k ' = F m  + k .  Since (1'2'. . . k')-' belongs to S(Fm+l), from (2.16) and (2.10) we 
have 

(4.10) p [ l v l i m )  (1'2'. , , k')-' = (-l)k-lpFu](m) 

Combining (4.8)-(4.10) leads to 

E m m + l l r , [ ~ ) ) = [ ( f m + l l f m + i I  1/2  P r  [u l im)  I{fiI*. .Kfm+l)Vm+l-1). . . { f m + n } ) .  (4.11) 



3450 J-Q Chen and X-G Chen 

Therefore we again have 

(iii) Fermion-fermion case 

For i 3 m + 2, we have 

= 1; (-1)k-1(1'2f. . . k ' ) ~ ' I ~ ~ L l $ ~ ' .  . . $:I), (4.14) 

where k ' =  Fi-l + k, and the sign factor (-l)k-l comes from the anticommutativity of 
4 ' s .  Using (4.10) and (4.14), equation (4.13) becomes 

k 

Hence equation (4.1) still holds for i 3 m + 2. 

4.2. Formulae for matrix elements of Ei-'i 

Equation (4.1) converts the problem of evaluating the matrix elements of E k - ' k  into 
a much easier one, i.e. calculating the overlaps between the non-standard basis vectors 
of S ( f ) ,  I[v](m'))  and I[v](m)). Notice that they are not orthogonal, since l [ v ] (m) )  
is adapted to the group chain 

s ( f ) 3 s ( f l ,  *fk-l,fk, * . f m + n )  (4.15a) 

whereas I[v](m')) is adapted to the group chain 

s(f)='s(fl, * * f k - l f l , f k - l ,  * * f m + n ) .  (4.15b) 

In order to evaluate the overlap ( [v ] (m ' ) l [ v ] (m) ) ,  we first decompose the non-standard 
basis I[v](m)) and l[v](m'))  into the IRB adapted to the common group chain 

s(fI3s(fl,. . efk-1, 19fk-1, 5 * . f m + n ) .  ( 4 . 1 5 ~ )  

and then use the orthonormality of the new basis to obtain the overlap. Evidently, 
for l[v](m))  we need to use the left decomposition, and for I[v](m')) the right 
decomposition. The matrix elements of Ek-lk are given below in the three cases. 

(i) Boson-boson 

Consider the case where a state k in the j th  row of a Weyl tableau W[,2, is being 
changed into the state k - 1 under the operation of Ek-lk. In order that the resulting 
Weyl tableau Wiklf, be lexical, this state k must lie at the leftmost position of the j th  
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row. The matrix element for this case is 

4 - 1  

( 4 . 1 6 ~ )  

b:Ik-” - - b ~ k - l i ( m J , k - l  -, ml,k-l + I). (4.17) 

Equation ( 4 . 1 6 ~ )  is identical with equation (29) of Sarma and Saharasbudhe 
(1980); however, here the factor [ ( f k - 1  + l)fk]”* emerges naturally instead of being 
put in by hand. 

Using (3.21), we get 

I .  k n ( m l k - m j k - l - i + j )  nk-l (mrk-2-m,k- l+j- i -1)  1 / 2  

I$ (mlk-1-mIk-1--i+j) (mlk- l -m,k- l+j- i - l )  
M(klLl,k (B-B) = (-.I)’’’ I = ’  , = 1  

I f J  

(4.166) 
j 

which is just the usual Gel’fand-Tsetlin formula. 

(ii) Fermion-boson 

Take up the case where a state m + 1 in the j th  column of W\;) is being chan ed 
into m under the action of Em,+l. Analogously, for the resulted Weyl tableau W(,,) 
being lexical, this state m + 1 has to be at the topmost row, say tth row, of the j th  
column. It implies that under the operation 

54 

[mi,]-. [mlm] = [ m i m .  . . mrm + 1 . . . I, 
[m I’m ] + [ m  k,] = [rii :,I = [ m  im . . . m i;n + 1 . . . 3. (4.18) 

Notice that a given j corresponds to a unique t. The matrix element for the above’ 
case is equal to 

\ I  m i m + n .  . . mh+n,m+n 
. I .  
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nh+l ( m  Tmmcl  -m~,,, + j - i )  nm (mim-1 -m,m + t  - i  - 1 )  
i = l  i = l  

nhc1 ( m  - m  + j - i )  11" (mi,,, - m f m  + t  - i  - 1 )  
1 rm l m  1 

i # j  i f f  

(4.20) 

(4.196) 

1 / 2  

. ( 4 . 1 9 ~ )  

(iii) Fermion-fermion 

Consider the case where a state K ( K  5 m + 2) in the topmost row of the j th  column 
of a Weyl tableau W\?, is being changed into K - 1 under EK-lK. Similarly we have 
the matrix element 

EK-l* 

\ \  m i m t n . .  . mhtn.min i 
I \  * . .  I 

( 4 . 2 1 ~ )  

(4.22) 

(4.216) 

where K = m + k, h = mi,. 
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The matrix elements of can be obtained from those of through 

(4.23) 

Thus (4.16), (4.19) and (4.21) exhausted all possible cases for E i j  with i = j *  1.  
Furthermore, from the commutator (Dondi and Jarvis 1981) 

( E A B  E C D )  AC = S B C E A D  - [ ; % A d C B  
- [ED]  

and the matrices of Eli with i = j f 1,  we can get the matrix for any generator E A B  of 
U W n  1. 

5. The norm R’”’’ 

Finally, let us find a closed form for the norm Rr”’s({fl}) in (2 .86) .  Forming the scalar 
product of I,,?:)) with equation (2.861, using (2.27), (2.216) and (2.23),  we can easily 
obtain 

R[”Is({f,}) = ~ ~ - ” * ( [ v ] ( m ) ~ [ v ] s ) .  (5.1) 

It shows that the norm is related to the overlap between the non-standard basis 
/ [ v ] ( m ) )  and the Yamanouchi basis I [v ] s )  of S(f). Usually there are several projection 
operators Pj”Is with different s which will lead to the same Gel’fand basis vector l,!(AJ 
upon acting on IQo). Let so be the minimum possible Yamanouchi number. The 
Yamanouchi symbol so is easily obtainable from the extended Yamanouchi symbol 
for I[v](m)) in ( 3 . 1 0 ~ )  by inserting the inverted parentheses ‘)(’ between any two 
different row numbers as well as between any two different column numbers. Therefore 
if 

J [ v ] ( m ) )  = (1’11)(1’1~2~22) . . . ( l f l k  . . . j ’ l k .  . . k f k k )  . . . 
( (h ) f i z im+,  . . .  i f T m - , , ) ,  , , ( ( m ) f x m + k  . . .  T t m + k  , , , i f i m + k )  . . .  

(5.2) 
then the corresponding I[v]so) will be 

I[v]so) = (lfIl)(lf9(2f22) . . . ( l f l k )  . . . ( j f J k )  * * * ( k f k k )  * * . 
x ( h ) f h T m + p , -  . . .  (ifim-- ) . . . (m)fm m + k  . . .  ( , j j f r m * k ) .  . . ( i f i m + k )  * . .  

(5.3) 
The overlap ( [ v ] ( m  ) I [ v ] s o )  can be factorised into two parts 

([vI(m )I[vIso) = ( [ v I ( m ) l [ ~ l ~ O ) B ( [ ~ l ( m ) / [ v l ~ ~ ) ~ ,  (5.4) 

and ([v](m )I[v]sO)B(([v](m ) I [ V ] S ~ ) ~ )  can be calculated by successively decomposing 
all the symmetric (antisymmetric) parentheses in l [v] (m)) .  One may either use the 
left or right decomposition. For definiteness, the left decomposition is used here. 

For multiple decomposition, we need to introduce the following notation for the 
decomposition coefficients. Suppose the kth parenthesis in (5.2) has already been 
decomposed to 

( 5 . 5 )  (B) = (1f1k)(2f2k) .  . . ( j -  1 ) ’ l - l  k ( j ) ’ ( j f fk- ‘ ( j+  l)’~+l k ,  , . k f k k ) .  
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The next decomposition is 

where a ( ( l r l k )  . . . ( j ' + ' ) )  is the decomposition coefficient which depends on the 'history' 
of the decomposition. According to the independent decomposition rule in 9: 3, we 
know that whenever a row number i has been separated from the kth symmetric 
parenthesis leftwards, the integer mik-1 should be increased by one in using formula 
( 3 . 2 1 ~ )  for further decomposition, i.e. let mik-1- mik-l+ 1. Hence we have 

a ( ( l f I k ) .  . .(i I t 1  ) ) = a i  ( k )  ( m i k - l ~ m i k - l f f i k , i = l , .  . . ] - l ; m j k - l ' m , k - l + I ) .  (5.7) 

Noting that m&l + f i k  = mik and using ( 3 . 2 1 ~ )  we found r. k 

i = j  

k 

t - = , + l  

II ( m i k - m j k - l + j - i - f )  

n (mik-1 - mjk-1 +i - i - I )  

(5 .8 )  

(5.9a) 

1 u ( ( l f l k ) ,  . ( / ' " ) ) = ( f k - f l k  - . . . - f j . . . 1 k - l ) p 1 ' 2  

Define 

( ~ v ~ ( m ) I [ v ~ s o ) L  = ( f i !  . . f m  !)"2([vI(m)I[vI~o)B. 

Comparing (5.2) with (5.3) and using ( 5 . 8 )  we get 

M k - l f , k - l  n k ( m i k - m j n - l + j - i - ~ )  
i = j  I", (5.96) 

where k f k  is the maximum row number in the k th parenthesis, while the prime restricts 
the range of the running index i to that for which f j k  a 1. 

In analogy with (5.6), for the K ( = m  +k) th  antisymmetric parenthesis we have 

nk (mik-1- mjk - 1  + i - i - I )  1 i = j + l  

m 

) ~ [ v l S o ) ~  = n (fhfkk !)I/ '  n' n 
k = l  j = l  1=0 

( h ) k ) ' l ~ = . ~  . . . (m)fiT.%( T ) ' (  T f ; h - '  . , . - 1fiq 

= a , ( ( h ) k ) ' " " . " ,  . . (T) '+? 
X ( h ) f h % . x  , , . (m)fx.q( r)'+'( Tf%-'-' , . . - l f i x ) .  (5.10) 

Analogously, whenever a column number i has been separated from the Kth 
antisymmetric parenthesis leftwards, the substitution m i;-] + m rK-l + 1 has to be 
made in (3.30) for further decomposition. Thus 

a ( ( h ) f = ,  , , (T)'+l) 

= a y ) ( m ; K - l + m i ; , - l  + f r K , i = j + l  . . . h + k ; m ~ K - l + m r K - l  +I). ( 5 . 1 1 )  

Noting that m i;-l + f L = m rK and using (5.30u), we get 

a ( ( 7 i X ) f G . K  . . . ( T ) ' + l )  

] ' I 2 .  

II' (mFK -mi-,-1 + j - - i - / )  
i = l  

(mTK-]  -mTK-l + j - i - l )  
I i = l  

(5.12) 

= ( f ~  - f h T , K  - . * -~,T,K - / ) - ' I 2  
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Comparing (5.2) with (5.3) and using (5.121, we obtain 

m + n  h - m + u  f f X - l  - [,=l,!:(mrK-m;K-i + j - i - [ )  
([~l(m)l[vlso)i:= n ( f A , K ! ) 1 / 2  fl n 

~ = m ~ l  , = f i x - l  [=I) nl-1 (m;K-l -miK-l  + j - i - l )  

(5.136) 

where A?K denotes the minimum column number in the K th antisymmetric parenthesis, 
and the running index j is restricted to those for which f rK > 1. 

Combining (2.24), (5.1), (5.4), (5.9) and (5.13), we get the sought for norm 

(5.15) 

From (5.96) and (5.136) it is seen that the norm R[”lsll is always real positive, in 
conformity with our previous phase convention (Chen et a1 1983b). 

The norm R‘”’s for s # s o  can be found from Rr”’s[r’ by using equation (426) in 
Chen er a1 (1983b). 

Before concluding the present paper, let us mention an important fact that by 
specialising the general non-standard basis I[v](m)) of (2.19) to the simplest case of 
the S( f )  3 S ( f l )  @ S ( f d  IRB,  the overlap ( [ ~ I ( ~ ) I [ V I S O ) B  ( ( [ ~ l ( m ) l [ v l ~ ~ ) ~ )  become the 
transformation coeficients between the Yamanouchi basis and the S ( f )  3 S(fl )  0 S( f , )  
IRB with irreps of S ( f 2 )  being totally symmetric (antisymmetric). These transformation 
coefficients of the permutation group are calculable from (5.9) and (5.13). Equation 
(5.9) and (5.13) have been verified from the agreement between the thus calculated 
transformation coefficients with the numerical table obtained via a FORTRAN program 
based on the eigenfunction method (Chen et a1 1 9 8 3 ~ ) .  
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